Мощный германиевый усилитель. Простой усилитель на германиевых транзисторах Качественный усилитель низкой частоты на германиевых транзисторах

Делаем усилитель звуковой частоты на германиевых транзисторах своими руками.

Просматривая публикации в интернете, а также видеоролики на ресурсе YouTube, можно отметить устойчивый интерес к сборке относительно несложных конструкций радиоприемников различных типов (прямого преобразования, регенеративных и других) и усилителей звуковой частоты на транзисторах, в том числе и на германиевых.

Сборка конструкций на германиевых транзисторах является своего рода ностальгией, потому что эра германиевых транзисторов закончилась лет 30 тому назад, собственно, как и их производство. Хотя аудиофилы по прежнему спорят до хрипоты, что же лучше для высокой верности воспроизведения звука-германий или кремний?

Оставим высокие материи и перейдем к практике…

Есть планы повторить пару конструкций несложных радиоприемников (прямого преобразования и регенеративных) для приема в диапазоне коротких волн. Как известно, усилитель ЗЧ является обязательной составной частью любого радиоприемника. Поэтому было принято решение изготовить УЗЧ в первую очередь.

Усилитель низкой (или звуковой, кому как удобно) частоты будет изготовлен отдельным узлом, так сказать, на все случаи жизни…

УЗЧ будем собирать на германиевых транзисторах производства СССР, благо у меня их лежит разных типов наверное до сотни. Видимо настало время дать им вторую жизнь.

Для радиоприемника большая выходная мощность УНЧ не нужна, достаточно до нескольких сотен милливатт.Поиск подходящей схемы привел вот к этой конструкции.

Данная схема подходит как нельзя кстати. Выходная мощность -0,5 Вт, все транзисторы германиевые, к тому же имеются в наличии, частотная характеристика оптимизирована для радиоприемников (ограничена сверху частотой 3,5 кГц), достаточно большое усиление.

Принципиальная схема усилителя.

Все необходимые для сборки усилителя детали недефицитные. Транзисторы МП37, МП39, МП41 взял первые попавшиеся под руку. Выходные транзисторы ГТ403 рекомендуется подобрать по коэффициенту усиления, но я этого не делал-у меня было пару штук новых из одной партии, их я и взял. Входной МП28 оказался в единственном экземпляре, но исправный.

Все транзисторы были проверены омметром на исправность. Как оказалось, это не гарантия от неисправностей, но об этом ниже…Электролитические конденсаторы взял импортные, С1-пленочный, С5-керамический.

В программе SprintLayout создаем разводку печатной платы. Вид со стороны печатных проводников.

Собственно, печатную плату, изготавливаем при помощи ЛУТ, травим в хлорном железе.

Запаиваем все необходимые детали. Плата собранного усилителя выглядит так.

Поскольку выходная мощность усилителя невелика-радиаторы для выходных транзисторов не нужны. При работе они еле теплые.

Настройка усилителя.

Собранный усилитель нуждается в некоторой настройке.

После подачи питания 9В замеряем напряжения в контрольных точках, которые указаны на схеме, приведенной выше. На коллекторе транзистора VТ2 напряжение было минус 2,5 В при необходимых -3…4 В.

Подбором резистора R2 устанавливаем необходимое напряжение.

С каскадом предварительного усиления на транзисторах VТ1 и VТ2 никаких проблем в настройке не возникло. Иная ситуация сложилась с выходным каскадом. Замер напряжения на средней точке (точка соединения эмиттер VT6 и коллектор VT7) показал величину минус 6 В. Попытка изменить напряжения путем подбора резисторов R7 или R8 не привела к желаемым результатам.

Кроме того, был занижен общий ток покоя усилителя- 4 мА вместо 5…7 мА. Виновником неисправности оказался транзистор VT3. Он хоть и прозванивался омметром как исправный, но в схеме работать отказался. После его замены все режимы транзисторов усилителя установились автоматически согласно указанным на схеме. Напряжения на электродах транзисторов в моем экземпляре усилителя при напряжении питания 9В указаны в таблице.Напряжения измерены тестером DT830B относительно общего провода.

Ток покоя усилителя устанавливается подбором диода D2 типа Д9. С первым попавшимся диодом у меня получился ток покоя 5,2 мА, т.е. то, что нужно.

Для проверки работоспособности подаем от генератора звуковых частот Г3-106 синусоидальное напряжение уровнем 0,3 мВ частотой 1000 Гц.
На фото- уровень выходного напряжения примерно 0,3В по стрелочному прибору. Сигнал дополнительно ослаблен на 60 дБ (в 1000 раз) делителем на выходе генератора.

К выходу усилителя подключаем нагрузку –резистор МОН-2 сопротивлением 5,6 Ом. Параллельно нагрузочному резистору подключаем щупы осциллографа. Наблюдаем чистую, без искажений синусоиду.

На экране осциллографа цена деления по вертикали -1В/дел. Следовательно размах напряжения составляет 5В. Эффективное напряжение составляет 1,77В. Имея эти цифры можем вычислить коэффициент усиления по напряжению:Выходная мощность на частоте 1 кГц составила:

Видим, что параметры усилителя соответствую заявленным.

Понятно, что данные замеры не совсем точны, потому как осциллограф не позволяет замерять напряжение с высокой точностью (это не его задачи), но для радиолюбительских целей это не столь принципиально.

Усилитель имеет высокую чувствительность, поэтому при неподключенном никуда входе в динамике негромко прослушиваются шумы и фон переменного напряжения.

При закороченном входе все посторонние шумы исчезают.

Осциллограмма напряжения шумов на выходе усилителя при закороченном входе:

Цена деления по вертикали -20мВ/дел. Размах напряжения шумов и фона около 30мВ. Эффективное напряжение шумов-10мВ.

Другими словами-усилитель достаточно тихий. Хотя в авторской статье указывается уровень шумов -1,2мВ. Возможно, в моем случае сыграла свою роль не совсем удачная разводка печатной платы.

Подавая на вход усилителя переменное напряжения различных частот при неизменном уровне и контролируя выходное напряжение на нагрузке осциллографом можем снять график амплитудно-частотной характеристики данного УНЧ.

– Сосед запарил по батарее стучать. Сделал музыку громче, чтобы его не слышать.
(Из фольклора аудиофилов).

Эпиграф иронический, но аудиофил совсем не обязательно «больной на всю голову» с физиономией Джоша Эрнеста на брифинге по вопросам отношений с РФ, которого «прёт» оттого, что соседи «счастливы». Кто-то хочет слушать серьезную музыку дома как в зале. Качество аппаратуры для этого нужно такое, какое у любителей децибел громкости как таковых просто не помещается там, где у здравомыслящих людей ум, но у последних оный за разум заходит от цен на подходящие усилители (УМЗЧ, усилитель мощности звуковой частоты). А у кого-то попутно возникает желание приобщиться к полезным и увлекательным сферам деятельности – технике воспроизведения звука и вообще электронике. Которые в век цифровых технологий неразрывно связаны и могут стать высокодоходной и престижной профессией. Оптимальный во всех отношениях первый шаг в этом деле – сделать усилитель своими руками: именно УМЗЧ позволяет с начальной подготовкой на базе школьной физики на одном и том же столе пройти путь от простейших конструкций на полвечера (которые, тем не менее, неплохо «поют») до сложнейших агрегатов, через которые с удовольствием сыграет и хорошая рок-группа. Цель данной публикации – осветить первые этапы этого пути для начинающих и, возможно, сообщить кое-что новое опытным.

Простейшие

Итак, для начала попробуем сделать усилитель звука, который просто работает. Чтобы основательно вникнуть в звукотехнику, придется постепенно освоить довольно много теоретического материала и не забывать по мере продвижения обогащать багаж знаний. Но любая «умность» усваивается легче, когда видишь и щупаешь, как она работает «в железе». В этой статье далее тоже без теории не обойдется – в том, что нужно знать поначалу и что возможно пояснить без формул и графиков. А пока достаточно будет умения и пользоваться мультитестером.

Примечание: если вы до сих пор не паяли электронику, учтите – ее компоненты нельзя перегревать! Паяльник – до 40 Вт (лучше 25 Вт), максимально допустимое время пайки без перерыва – 10 с. Паяемый вывод для теплоотвода удерживается в 0,5-3 см от места пайки со стороны корпуса прибора медицинским пинцетом. Кислотные и др. активные флюсы применять нельзя! Припой – ПОС-61.

Слева на рис. – простейший УМЗЧ, «который просто работает». Его можно собрать как на германиевых, так и на кремниевых транзисторах.

На этой крошке удобно осваивать азы наладки УМЗЧ с непосредственными связями между каскадами, дающими наиболее чистый звук:

  • Перед первым включением питания нагрузку (динамик) отключаем;
  • Вместо R1 впаиваем цепочку из постоянного резистора на 33 кОм и переменного (потенциометра) на 270 кОм, т.е. первый прим. вчетверо меньшего, а второй прим. вдвое большего номинала против исходного по схеме;
  • Подаем питание и, вращая движок потенциометра, в точке, обозначенной крестиком, выставляем указанный ток коллектора VT1;
  • Снимаем питание, выпаиваем временные резисторы и замеряем их общее сопротивление;
  • В качестве R1 ставим резистор номинала из стандартного ряда, ближайшего к измеренному;
  • Заменяем R3 на цепочку постоянный 470 Ом + потенциометр 3,3 кОм;
  • Так же, как по пп. 3-5, в т. а выставляем напряжение, равное половине напряжения питания.

Точка а, откуда снимается сигнал в нагрузку это т. наз. средняя точка усилителя. В УМЗЧ с однополярным питанием в ней выставляют половину его значения, а в УМЗЧ в двухполярным питанием – ноль относительно общего провода. Это называется регулировкой баланса усилителя. В однополярных УМЗЧ с емкостной развязкой нагрузки отключать ее на время наладки не обязательно, но лучше привыкать делать это рефлекторно: разбалансированный 2-полярный усилитель с подключенной нагрузкой способен сжечь свои же мощные и дорогие выходные транзисторы, а то и «новый, хороший» и очень дорогой мощный динамик.

Примечание: компоненты, требующие подбора при наладке устройства в макете, на схемах обозначаются или звездочкой (*), или штрихом-апострофом (‘).

В центре на том же рис. – простой УМЗЧ на транзисторах, развивающий уже мощность до 4-6 Вт на нагрузке 4 Ом. Хотя и работает он, как и предыдущий, в т. наз. классе AB1, не предназначенном для Hi-Fi озвучивания, но, если заменить парой таких усилитель класса D (см. далее) в дешевых китайских компьютерных колонках, их звучание заметно улучшается. Здесь узнаем еще одну хитрость: мощные выходные транзисторы нужно ставить на радиаторы. Компоненты, требующие дополнительного охлаждения, на схемах обводятся пунктиром; правда, далеко не всегда; иногда – с указанием необходимой рассеивающей площади теплоотвода. Наладка этого УМЗЧ – балансировка с помощью R2.

Справа на рис. – еще не монстр на 350 Вт (как был показан в начале статьи), но уже вполне солидный зверюга: простой усилитель на транзисторах мощностью 100 Вт. Музыку через него слушать можно, но не Hi-Fi, класс работы – AB2. Однако для озвучивания площадки для пикника или собрания на открытом воздухе, школьного актового или небольшого торгового зала он вполне пригоден. Любительская рок-группа, имея по такому УМЗЧ на инструмент, может успешно выступать.

В этом УМЗЧ проявляются еще 2 хитрости: во-первых, в очень мощных усилителях каскад раскачки мощного выхода тоже нужно охлаждать, поэтому VT3 ставят на радиатор от 100 кв. см. Для выходных VT4 и VT5 нужны радиаторы от 400 кв. см. Во-вторых, УМЗЧ с двухполярным питанием совсем без нагрузки не балансируются. То один, то другой выходной транзистор уходит в отсечку, а сопряженный в насыщение. Затем, на полном напряжении питания скачки тока при балансировке способны вывести из строя выходные транзисторы. Поэтому для балансировки (R6, догадались?) усилитель запитывают от +/–24 В, а вместо нагрузки включают проволочный резистор 100…200 Ом. Кстати, закорючки в некоторых резисторах на схеме – римские цифры, обозначающие их необходимую мощность рассеяния тепла.

Примечание: источник питания для этого УМЗЧ нужен мощностью от 600 Вт. Конденсаторы сглаживающего фильтра – от 6800 мкФ на 160 В. Параллельно электролитическим конденсаторам ИП включаются керамические по 0,01 мкФ для предотвращения самовозбуждения на ультразвуковых частотах, способного мгновенно сжечь выходные транзисторы.

На полевиках

На след. рис. – еще один вариант достаточно мощного УМЗЧ (30 Вт, а при напряжении питания 35 В – 60 Вт) на мощных полевых транзисторах:

Звук от него уже тянет на требования к Hi-Fi начального уровня (если, разумеется, УМЗЧ работает на соотв. акустические системы, АС). Мощные полевики не требуют большой мощности для раскачки, поэтому и предмощного каскада нет. Еще мощные полевые транзисторы ни при каких неисправностях не сжигают динамики – сами быстрее сгорают. Тоже неприятно, но все-таки дешевле, чем менять дорогую басовую головку громкоговорителя (ГГ). Балансировка и вообще наладка данному УМЗЧ не требуются. Недостаток у него, как у конструкции для начинающих, всего один: мощные полевые транзисторы много дороже биполярных для усилителя с такими же параметрами. Требования к ИП – аналогичные пред. случаю, но мощность его нужна от 450 Вт. Радиаторы – от 200 кв. см.

Примечание: не надо строить мощные УМЗЧ на полевых транзисторах для импульсных источников питания, напр. компьютерных. При попытках «загнать» их в активный режим, необходимый для УМЗЧ, они или просто сгорают, или звук дают слабый, а по качеству «никакой». То же касается мощных высоковольтных биполярных транзисторов, напр. из строчной развертки старых телевизоров.

Сразу вверх

Если вы уже сделали первые шаги, то вполне естественным будет желание построить УМЗЧ класса Hi-Fi, не вдаваясь слишком глубоко в теоретические дебри. Для этого придется расширить приборный парк – нужен осциллограф, генератор звуковых частот (ГЗЧ) и милливольтметр переменного тока с возможностью измерения постоянной составляющей. Прототипом для повторения лучше взять УМЗЧ Е. Гумели, подробно описанный в «Радио» №1 за 1989 г. Для его постройки понадобится немного недорогих доступных компонент, но качество удовлетворяет весьма высоким требованиям: мощность до 60 Вт, полоса 20-20 000 Гц, неравномерность АЧХ 2 дБ, коэффициент нелинейных искажений (КНИ) 0,01%, уровень собственных шумов –86 дБ. Однако наладить усилитель Гумели достаточно сложно; если вы с ним справитесь, можете браться за любой другой. Впрочем, кое-какие из известных ныне обстоятельств намного упрощают налаживание данного УМЗЧ, см. ниже. Имея в виду это и то, что в архивы «Радио» пробраться не всем удается, уместно будет повторить основные моменты.

Схемы простого высококачественного УМЗЧ

Схемы УМЗЧ Гумели и спецификация к ним даны на иллюстрации. Радиаторы выходных транзисторов – от 250 кв. см. для УМЗЧ по рис. 1 и от 150 кв. см. для варианта по рис. 3 (нумерация оригинальная). Транзисторы предвыходного каскада (КТ814/КТ815) устанавливаются на радиаторы, согнутые из алюминиевых пластин 75х35 мм толщиной 3 мм. Заменять КТ814/КТ815 на КТ626/КТ961 не стоит, звук заметно не улучшается, но налаживание серьезно затрудняется.

Этот УМЗЧ очень критичен к электропитанию, топологии монтажа и общей, поэтому налаживать его нужно в конструктивно законченном виде и только со штатным источником питания. При попытке запитать от стабилизированного ИП выходные транзисторы сгорают сразу. Поэтому на рис. даны чертежи оригинальных печатных плат и указания по наладке. К ним можно добавить что, во-первых, если при первом включении заметен «возбуд», с ним борются, меняя индуктивность L1. Во-вторых, выводы устанавливаемых на платы деталей должны быть не длиннее 10 мм. В-третьих, менять топологию монтажа крайне нежелательно, но, если очень надо, на стороне проводников обязательно должен быть рамочный экран (земляная петля, выделена цветом на рис.), а дорожки электропитания должны проходить вне ее.

Примечание: разрывы в дорожках, к которым подключаются базы мощных транзисторов – технологические, для налаживания, после чего запаиваются каплями припоя.

Налаживание данного УМЗЧ много упрощается, а риск столкнуться с «возбудом» в процессе пользования сводится к нулю, если:

  • Минимизировать межблочный монтаж, поместив платы на радиаторах мощных транзисторов.
  • Полностью отказаться от разъемов внутри, выполнив весь монтаж только пайкой. Тогда не нужны будут R12, R13 в мощном варианте или R10 R11 в менее мощном (на схемах они пунктирные).
  • Использовать для внутреннего монтажа аудиопровода из бескислородной меди минимальной длины.

При выполнении этих условий с возбуждением проблем не бывает, а налаживание УМЗЧ сводится к рутинной процедуре, описанной на рис.

Провода для звука

Аудиопровода не досужая выдумка. Необходимость их применения в настоящее время несомненна. В меди с примесью кислорода на гранях кристаллитов металла образуется тончайшая пленочка окисла. Оксиды металлов полупроводники и, если ток в проводе слабый без постоянной составляющей, его форма искажается. По идее, искажения на мириадах кристаллитов должны компенсировать друг друга, но самая малость (похоже, обусловленная квантовыми неопределенностями) остается. Достаточная, чтобы быть замеченной взыскательными слушателями на фоне чистейшего звука современных УМЗЧ.

Производители и торговцы без зазрения совести подсовывают вместо бескислородной обычную электротехническую медь – отличить одну от другой на глаз невозможно. Однако есть сфера применения, где подделка не проходит однозначно: кабель витая пара для компьютерных сетей. Положить сетку с длинными сегментами «леварем», она или вовсе не запустится, или будет постоянно глючить. Дисперсия импульсов, понимаешь ли.

Автор, когда только еще пошли разговоры об аудиопроводах, понял, что, в принципе, это не пустая болтовня, тем более, что бескислородные провода к тому времени уже давно использовались в технике спецназначения, с которой он по роду деятельности был хорошо знаком. Взял тогда и заменил штатный шнур своих наушников ТДС-7 самодельным из «витухи» с гибкими многожильными проводами. Звук, на слух, стабильно улучшился для сквозных аналоговых треков, т.е. на пути от студийного микрофона до диска нигде не подвергавшихся оцифровке. Особенно ярко зазвучали записи на виниле, сделанные по технологии DMM (Direct Meta lMastering, непосредственное нанесение металла). После этого межблочный монтаж всего домашнего аудио был переделан на «витушный». Тогда улучшение звучания стали отмечать и совершенно случайные люди, к музыке равнодушные и заранее не предуведомленные.

Как сделать межблочные провода из витой пары, см. след. видео.

Видео: межблочные провода из витой пары своими руками

К сожалению, гибкая «витуха» скоро исчезла из продажи – плохо держалась в обжимаемых разъемах. Однако, к сведению читателей, только из бескислородной меди делается гибкий «военный» провод МГТФ и МГТФЭ (экранированный). Подделка невозможна, т.к. на обычной меди ленточная фторопластовая изоляция довольно быстро расползается. МГТФ сейчас есть в широкой продаже и стоит много дешевле фирменных, с гарантией, аудиопроводов. Недостаток у него один: его невозможно выполнить расцвеченным, но это можно исправить бирками. Есть также и бескислородные обмоточные провода, см. далее.

Теоретическая интермедия

Как видим, уже на первых порах освоения звукотехники нам пришлось столкнуться с понятием Hi-Fi (High Fidelity), высокая верность воспроизведения звука. Hi-Fi бывают разных уровней, которые ранжируются по след. основным параметрам:

  1. Полосе воспроизводимых частот.
  2. Динамическому диапазону – отношению в децибелах (дБ) максимальной (пиковой) выходной мощности к уровню собственных шумов.
  3. Уровню собственных шумов в дБ.
  4. Коэффициенту нелинейных искажений (КНИ) на номинальной (долговременной) выходной мощности. КНИ на пиковой мощности принимается 1% или 2% в зависимости от методики измерений.
  5. Неравномерности амплитудно-частотной характеристики (АЧХ) в полосе воспроизводимых частот. Для АС – отдельно на низких (НЧ, 20-300 Гц), средних (СЧ, 300-5000 Гц) и высоких (ВЧ, 5000-20 000 Гц) звуковых частотах.

Примечание: отношение абсолютных уровней каких-либо величин I в (дБ) определяется как P(дБ) = 20lg(I1/I2). Если I1

Все тонкости и нюансы Hi-Fi нужно знать, занимаясь проектированием и постройкой АС, а что касается самодельного Hi-Fi УМЗЧ для дома, то, прежде чем переходить к таким, нужно четко уяснить себе требования к их мощности, необходимой для озвучивания данного помещения, динамическому диапазону (динамике), уровню собственных шумов и КНИ. Добиться от УМЗЧ полосы частот 20-20 000 Гц с завалом на краях по 3 дБ и неравномерностью АЧХ на СЧ в 2 дБ на современной элементной базе не составляет больших сложностей.

Громкость

Мощность УМЗЧ не самоцель, она должна обеспечивать оптимальную громкость воспроизведения звука в данном помещении. Определить ее можно по кривым равной громкости, см. рис. Естественных шумов в жилых помещениях тише 20 дБ не бывает; 20 дБ это лесная глушь в полный штиль. Уровень громкости в 20 дБ относительно порога слышимости это порог внятности – шепот разобрать еще можно, но музыка воспринимается только как факт ее наличия. Опытный музыкант может определить, какой инструмент играет, но что именно – нет.

40 дБ – нормальный шум хорошо изолированной городской квартиры в тихом районе или загородного дома – представляет порог разборчивости. Музыку от порога внятности до порога разборчивости можно слушать при наличии глубокой коррекции АЧХ, прежде всего по басам. Для этого в современные УМЗЧ вводят функцию MUTE (приглушка, мутирование, не мутация!), включающую соотв. корректирующие цепи в УМЗЧ.

90 дБ – уровень громкости симфонического оркестра в очень хорошем концертном зале. 110 дБ может выдать оркестр расширенного состава в зале с уникальной акустикой, каких в мире не более 10, это порог восприятия: звуки громче воспринимаются еще как различимый по смыслу с усилием воли, но уже раздражающий шум. Зона громкости в жилых помещениях 20-110 дБ составляет зону полной слышимости, а 40-90 дБ – зону наилучшей слышимости, в которой неподготовленные и неискушенные слушатели вполне воспринимают смысл звука. Если, конечно, он в нем есть.

Мощность

Расчет мощности аппаратуры по заданной громкости в зоне прослушивания едва ли не основная и самая трудная задача электроакустики. Для себя в условиях лучше идти от акустических систем (АС): рассчитать их мощность по упрощенной методике, и принять номинальную (долговременную) мощность УМЗЧ равной пиковой (музыкальной) АС. В таком случае УМЗЧ не добавит заметно своих искажений к таковым АС, они и так основной источник нелинейности в звуковом тракте. Но и делать УМЗЧ слишком мощным не следует: в таком случае уровень его собственных шумов может оказаться выше порога слышимости, т.к. считается он от уровня напряжения выходного сигнала на максимальной мощности. Если считать совсем уж просто, то для комнаты обычной квартиры или дома и АС с нормальной характеристической чувствительностью (звуковой отдачей) можно принять след. значения оптимальной мощности УМЗЧ:

  • До 8 кв. м – 15-20 Вт.
  • 8-12 кв. м – 20-30 Вт.
  • 12-26 кв. м – 30-50 Вт.
  • 26-50 кв. м – 50-60 Вт.
  • 50-70 кв. м – 60-100 Вт.
  • 70-100 кв. м – 100-150 Вт.
  • 100-120 кв. м – 150-200 Вт.
  • Более 120 кв. м – определяется расчетом по данным акустических измерений на месте.

Динамика

Динамический диапазон УМЗЧ определяется по кривым равной громкости и пороговым значениям для разных степеней восприятия:

  1. Симфоническая музыка и джаз с симфоническим сопровождением – 90 дБ (110 дБ – 20 дБ) идеал, 70 дБ (90 дБ – 20 дБ) приемлемо. Звук с динамикой 80-85 дБ в городской квартире не отличит от идеального никакой эксперт.
  2. Прочие серьезные музыкальные жанры – 75 дБ отлично, 80 дБ «выше крыши».
  3. Попса любого рода и саундтреки к фильмам – 66 дБ за глаза хватит, т.к. данные опусы уже при записи сжимаются по уровням до 66 дБ и даже до 40 дБ, чтобы можно было слушать на чем угодно.

Динамический диапазон УМЗЧ, правильно выбранного для данного помещения, считают равным его уровню собственных шумов, взятому со знаком +, это т. наз. отношение сигнал/шум.

КНИ

Нелинейные искажения (НИ) УМЗЧ это составляющие спектра выходного сигнала, которых не было во входном. Теоретически НИ лучше всего «затолкать» под уровень собственных шумов, но технически это очень трудно реализуемо. На практике берут в расчет т. наз. эффект маскировки: на уровнях громкости ниже прим. 30 дБ диапазон воспринимаемых человеческим ухом частот сужается, как и способность различать звуки по частоте. Музыканты слышат ноты, но оценить тембр звука затрудняются. У людей без музыкального слуха эффект маскировки наблюдается уже на 45-40 дБ громкости. Поэтому УМЗЧ с КНИ 0,1% (–60 дБ от уровня громкости в 110 дБ) оценит как Hi-Fi рядовой слушатель, а с КНИ 0,01% (–80 дБ) можно считать не искажающим звук.

Лампы

Последнее утверждение, возможно, вызовет неприятие, вплоть до яростного, у адептов ламповой схемотехники: мол, настоящий звук дают только лампы, причем не просто какие-то, а отдельные типы октальных. Успокойтесь, господа – особенный ламповый звук не фикция. Причина – принципиально различные спектры искажений у электронных ламп и транзисторов. Которые, в свою очередь, обусловлены тем, что в лампе поток электронов движется в вакууме и квантовые эффекты в ней не проявляются. Транзистор же прибор квантовый, там неосновные носители заряда (электроны и дырки) движутся в кристалле, что без квантовых эффектов вообще невозможно. Поэтому спектр ламповых искажений короткий и чистый: в нем четко прослеживаются только гармоники до 3-й – 4-й, а комбинационных составляющих (сумм и разностей частот входного сигнала и их гармоник) очень мало. Поэтому во времена вакуумной схемотехники КНИ называли коэффициентом гармоник (КГ). У транзисторов же спектр искажений (если они измеримы, оговорка случайная, см. ниже) прослеживается вплоть до 15-й и более высоких компонент, и комбинационных частот в нем хоть отбавляй.

На первых порах твердотельной электроники конструкторы транзисторных УМЗЧ брали для них привычный «ламповый» КНИ в 1-2%; звук с ламповым спектром искажений такой величины рядовыми слушателями воспринимается как чистый. Между прочим, и самого понятия Hi-Fiтогда еще не было. Оказалось – звучат тускло и глухо. В процессе развития транзисторной техники и выработалось понимание, что такое Hi-Fi и что для него нужно.

В настоящее время болезни роста транзисторной техники успешно преодолены и побочные частоты на выходе хорошего УМЗЧ с трудом улавливаются специальными методами измерений. А ламповую схемотехнику можно считать перешедшей в разряд искусства. Его основа может быть любой, почему же электронике туда нельзя? Тут уместна будет аналогия с фотографией. Никто не сможет отрицать, что современная цифрозеркалка дает картинку неизмеримо более четкую, подробную, глубокую по диапазону яркостей и цвета, чем фанерный ящичек с гармошкой. Но кто-то крутейшим Никоном «клацает фотки» типа «это мой жирный кошак нажрался как гад и дрыхнет раскинув лапы», а кто-то Сменой-8М на свемовскую ч/б пленку делает снимок, перед которым на престижной выставке толпится народ.

Примечание: и еще раз успокойтесь – не все так плохо. На сегодня у ламповых УМЗЧ малой мощности осталось по крайней мере одно применение, и не последней важности, для которого они технически необходимы.

Опытный стенд

Многие любители аудио, едва научившись паять, тут же «уходят в лампы». Это ни в коем случае не заслуживает порицания, наоборот. Интерес к истокам всегда оправдан и полезен, а электроника стала таковой на лампах. Первые ЭВМ были ламповыми, и бортовая электронная аппаратура первых космических аппаратов была тоже ламповой: транзисторы тогда уже были, но не выдерживали внеземной радиации. Между прочим, тогда под строжайшим секретом создавались и ламповые… микросхемы! На микролампах с холодным катодом. Единственное известное упоминание о них в открытых источниках есть в редкой книге Митрофанова и Пикерсгиля «Современные приемно-усилительные лампы».

Но хватит лирики, к делу. Для любителей повозиться с лампами на рис. – схема стендового лампового УМЗЧ, предназначенного именно для экспериментов: SA1 переключается режим работы выходной лампы, а SA2 – напряжение питания. Схема хорошо известна в РФ, небольшая доработка коснулась только выходного трансформатора: теперь можно не только «гонять» в разных режимах родную 6П7С, но и подбирать для других ламп коэффициент включения экранной сетки в ульралинейном режиме; для подавляющего большинства выходных пентодов и лучевых тетродов он или 0,22-0,25, или 0,42-0,45. Об изготовлении выходного трансформатора см. ниже.

Гитаристам и рокерам

Это тот самый случай, когда без ламп не обойтись. Как известно, электрогитара стала полноценным солирующим инструментом после того, как предварительно усиленный сигнал со звукоснимателя стали пропускать через специальную приставку – фьюзер – преднамеренно искажающую его спектр. Без этого звук струны был слишком резким и коротким, т.к. электромагнитный звукосниматель реагирует только на моды ее механических колебаний в плоскости деки инструмента.

Вскоре выявилось неприятное обстоятельство: звучание электрогитары с фьюзером обретает полную силу и яркость только на больших громкостях. Особенно это проявляется для гитар со звукоснимателем типа хамбакер, дающим самый «злой» звук. А как быть начинающему, вынужденному репетировать дома? Не идти же в зал выступать, не зная точно, как там зазвучит инструмент. И просто любителям рока хочется слушать любимые вещи в полном соку, а рокеры народ в общем-то приличный и неконфликтный. По крайней мере те, кого интересует именно рок-музыка, а не антураж с эпатажем.

Так вот, оказалось, что роковый звук появляется на уровнях громкости, приемлемых для жилых помещений, если УМЗЧ ламповый. Причина – специфическое взаимодействие спектра сигнала с фьюзера с чистым и коротким спектром ламповых гармоник. Тут снова уместна аналогия: ч/б фото может быть намного выразительнее цветного, т.к. оставляет для просмотра только контур и свет.

Тем, кому ламповый усилитель нужен не для экспериментов, а в силу технической необходимости, долго осваивать тонкости ламповой электроники недосуг, они другим увлечены. УМЗЧ в таком случае лучше делать бестрансформаторный. Точнее – с однотактным согласующим выходным трансформатором, работающим без постоянного подмагничивания. Такой подход намного упрощает и ускоряет изготовление самого сложного и ответственного узла лампового УМЗЧ.

“Бестрансформаторный” ламповый выходной каскад УМЗЧ и предварительные усилители к нему

Справа на рис. дана схема бестрансформаторного выходного каскада лампового УМЗЧ, а слева – варианты предварительного усилителя для него. Вверху – с регулятором тембра по классической схеме Баксандала, обеспечивающей достаточно глубокую регулировку, но вносящей небольшие фазовые искажения в сигнал, что может быть существенно при работе УМЗЧ на 2-полосную АС. Внизу – предусилитель с регулировкой тембра попроще, не искажающей сигнал.

Но вернемся к «оконечнику». В ряде зарубежных источников данная схема считается откровением, однако идентичная ей, за исключением емкости электролитических конденсаторов, обнаруживается в советском «Справочнике радиолюбителя» 1966 г. Толстенная книжища на 1060 страниц. Не было тогда интернета и баз данных на дисках.

Там же, справа на рис., коротко, но ясно описаны недостатки этой схемы. Усовершенствованная, из того же источника, дана на след. рис. справа. В ней экранная сетка Л2 запитана от средней точки анодного выпрямителя (анодная обмотка силового трансформатора симметричная), а экранная сетка Л1 через нагрузку. Если вместо высокоомных динамиков включить согласующий трансформатор с обычным динамиков, как в пред. схеме, выходная мощность составить ок. 12 Вт, т.к. активное сопротивление первичной обмотки трансформатора много меньше 800 Ом. КНИ этого оконечного каскада с трансформаторным выходом – прим. 0,5%

Как сделать трансформатор?

Главные враги качества мощного сигнального НЧ (звукового) трансформатора – магнитное поле рассеяния, силовые линии которого замыкаются, обходя магнитопровод (сердечник), вихревые токи в магнитопроводе (токи Фуко) и, в меньшей степени – магнитострикция в сердечнике. Из-за этого явления небрежно собранный трансформатор «поет», гудит или пищит. С токами Фуко борются, уменьшая толщину пластин магнитопровода и дополнительно изолируя их лаком при сборке. Для выходных трансформаторов оптимальная толщина пластин – 0,15 мм, максимально допустимая – 0,25 мм. Брать для выходного трансформатора пластины тоньше не следует: коэффициент заполнения керна (центрального стержня магнитопровода) сталью упадет, сечение магнитопровода для получения заданной мощности придется увеличить, отчего искажения и потери в нем только возрастут.

В сердечнике звукового трансформатора, работающего с постоянным подмагничиванием (напр., анодным током однотактного выходного каскада) должен быть небольшой (определяется расчетом) немагнитный зазор. Наличие немагнитного зазора, с одной стороны, уменьшает искажения сигнала от постоянного подмагничивания; с другой – в магнитопроводе обычного типа увеличивает поле рассеяния и требует сердечника большего сечения. Поэтому немагнитный зазор нужно рассчитывать на оптимум и выполнять как можно точнее.

Для трансформаторов, работающих с подмагничиванием, оптимальный тип сердечника – из пластин Шп (просеченных), поз. 1 на рис. В них немагнитный зазор образуется при просечке керна и потому стабилен; его величина указывается в паспорте на пластины или замеряется набором щупов. Поле рассеяния минимально, т.к. боковые ветви, через которые замыкается магнитный поток, цельные. Из пластин Шп часто собирают и сердечники трансформаторов без подмагничивания, т.к. пластины Шп делают из высококачественной трансформаторной стали. В таком случае сердечник собирают вперекрышку (пластины кладут просечкой то в одну, то в другую сторону), а его сечение увеличивают на 10% против расчетного.

Трансформаторы без подмагничивания лучше мотать на сердечниках УШ (уменьшенной высоты с уширенными окнами), поз. 2. В них уменьшение поля рассеяния достигается за счет уменьшения длины магнитного пути. Поскольку пластины УШ доступнее Шп, из них часто набирают и сердечники трансформаторов с подмагничиванием. Тогда сборку сердечника ведут внакрой: собирают пакет из Ш-пластин, кладут полоску непроводящего немагнитного материала толщиной в величину немагнитного зазора, накрывают ярмом из пакета перемычек и стягивают все вместе обоймой.

Примечание: «звуковые» сигнальные магнитопроводы типа ШЛМ для выходных трансформаторов высококачественных ламповых усилителей мало пригодны, у них большое поле рассеяния.

На поз. 3 дана схема размеров сердечника для расчета трансформатора, на поз. 4 конструкция каркаса обмоток, а на поз. 5 – выкройки его деталей. Что до трансформатора для «бестрансформаторного» выходного каскада, то его лучше делать на ШЛМме вперекрышку, т.к. подмагничивание ничтожно мало (ток подмагничивания равен току экранной сетки). Главная задача тут – сделать обмотки как можно компактнее с целью уменьшения поля рассеяния; их активное сопротивление все равно получится много меньше 800 Ом. Чем больше свободного места останется в окнах, тем лучше получился трансформатор. Поэтому обмотки мотают виток к витку (если нет намоточного станка, это маета ужасная) из как можно более тонкого провода, коэффициент укладки анодной обмотки для механического расчета трансформатора берут 0,6. Обмоточный провод – марок ПЭТВ или ПЭММ, у них жила бескислородная. ПЭТВ-2 или ПЭММ-2 брать не надо, у них от двойной лакировки увеличенный наружный диаметр и поле рассеяния будет больше. Первичную обмотку мотают первой, т.к. именно ее поле рассеяния больше всего влияет на звук.

Железо для этого трансформатора нужно искать с отверстиями в углах пластин и стяжными скобами (см. рис. справа), т.к. «для полного счастья» сборка магнитопровода производится в след. порядке (разумеется, обмотки с выводами и наружной изоляцией должны быть уже на каркасе):

  1. Готовят разбавленный вдвое акриловый лак или, по старинке, шеллак;
  2. Пластины с перемычками быстро покрывают лаком с одной стороны и как можно быстрее, не придавливая сильно, вкладывают в каркас. Первую пластину кладут лакированной стороной внутрь, следующую – нелакированной стороной к лакированной первой и т.д;
  3. Когда окно каркаса заполнится, накладывают скобы и туго стягивают болтами;
  4. Через 1-3 мин, когда выдавливание лака из зазоров видимо прекратится, добавляют пластин снова до заполнения окна;
  5. Повторяют пп. 2-4, пока окно не будет туго набито сталью;
  6. Снова туго стягивают сердечник и сушат на батарее и т.п. 3-5 суток.

Собранный по такой технологии сердечник имеет очень хорошие изоляцию пластин и заполнение сталью. Потерь на магнитострикцию вообще не обнаруживается. Но учтите – для сердечников их пермаллоя данная методика неприменима, т.к. от сильных механических воздействий магнитные свойства пермаллоя необратимо ухудшаются!

На микросхемах

УМЗЧ на интегральных микросхемах (ИМС) делают чаще всего те, кого устраивает качество звука до среднего Hi-Fi, но более привлекает дешевизна, быстрота, простота сборки и полное отсутствие каких-либо наладочных процедур, требующих специальных знаний. Попросту, усилитель на микросхемах – оптимальный вариант для «чайников». Классика жанра здесь – УМЗЧ на ИМС TDA2004, стоящей на серии, дай бог памяти, уже лет 20, слева на рис. Мощность – до 12 Вт на канал, напряжение питания – 3-18 В однополярное. Площадь радиатора – от 200 кв. см. для максимальной мощности. Достоинство – способность работать на очень низкоомную, до 1,6 Ом, нагрузку, что позволяет снимать полную мощность при питании от бортовой сети 12 В, а 7-8 Вт – при 6-вольтовом питании, напр., на мотоцикле. Однако выход TDA2004 в классе В некомплементарный (на транзисторах одинаковой проводимости), поэтому звучок точно не Hi-Fi: КНИ 1%, динамика 45 дБ.

Более современная TDA7261 звук дает не лучше, но мощнее, до 25 Вт, т.к. верхний предел напряжения питания увеличен до 25 В. Нижний, 4,5 В, все еще позволяет запитываться от 6 В бортсети, т.е. TDA7261 можно запускать практически от всех бортсетей, кроме самолетной 27 В. С помощью навесных компонент (обвязки, справа на рис.) TDA7261 может работать в режиме мутирования и с функцией St-By (Stand By, ждать), переводящей УМЗЧ в режим минимального энергопотребления при отсутствии входного сигнала в течение определенного времени. Удобства стоят денег, поэтому для стерео нужна будет пара TDA7261 с радиаторами от 250 кв. см. для каждой.

Примечание: если вас чем-то привлекают усилители с функцией St-By, учтите – ждать от них динамики шире 66 дБ не стоит.

«Сверхэкономична» по питанию TDA7482, слева на рис., работающая в т. наз. классе D. Такие УМЗЧ иногда называют цифровыми усилителями, что неверно. Для настоящей оцифровки с аналогового сигнала снимают отсчеты уровня с частотой квантования, не мене чем вдвое большей наивысшей из воспроизводимых частот, величина каждого отсчета записывается помехоустойчивым кодом и сохраняется для дальнейшего использования. УМЗЧ класса D – импульсные. В них аналог непосредственно преобразуется в последовательность широтно-модулированных импульсов (ШИМ) высокой частоты, которая и подается на динамик через фильтр низких частот (ФНЧ).

Звук класса D с Hi-Fi не имеет ничего общего: КНИ в 2% и динамика в 55 дБ для УМЗЧ класса D считаются очень хорошими показателями. И TDA7482 здесь, надо сказать, выбор не оптимальный: другие фирмы, специализирующиеся на классе D, выпускают ИМС УМЗЧ дешевле и требующие меньшей обвязки, напр., D-УМЗЧ серии Paxx, справа на рис.

Из TDAшек следует отметить 4-канальную TDA7385, см. рис., на которой можно собрать хороший усилитель для колонок до среднего Hi-Fi включительно, с разделением частот на 2 полосы или для системы с сабвуфером. Расфильтровка НЧ и СЧ-ВЧ в том и другом случае делается по входу на слабом сигнале, что упрощает конструкцию фильтров и позволяет глубже разделить полосы. А если акустика сабвуферная, то 2 канала TDA7385 можно выделить под суб-УНЧ мостовой схемы (см. ниже), а остальные 2 задействовать для СЧ-ВЧ.

УМЗЧ для сабвуфера

Сабвуфер, что можно перевести как «подбасовик» или, дословно, «подгавкиватель» воспроизводит частоты до 150-200 Гц, в этом диапазоне человеческие уши практически не способны определить направление на источник звука. В АС с сабвуфером «подбасовый» динамик ставят в отельное акустическое оформление, это и есть сабвуфер как таковой. Сабвуфер размещают, в принципе, как удобнее, а стереоэффект обеспечивается отдельными СЧ-ВЧ каналами со своими малогабаритными АС, к акустическому оформлению которых особо серьезных требований не предъявляется. Знатоки сходятся на том, что стерео лучше все же слушать с полным разделением каналов, но сабвуферные системы существенно экономят средства или труд на басовый тракт и облегчают размещение акустики в малогабаритных помещениях, почему и пользуются популярностью у потребителей с обычным слухом и не особо взыскательных.

«Просачивание» СЧ-ВЧ в сабвуфер, а из него в воздух, сильно портит стерео, но, если резко «обрубить» подбасы, что, кстати, очень сложно и дорого, то возникнет очень неприятный на слух эффект перескока звука. Поэтому расфильтровка каналов в сабвуферных системах производится дважды. На входе электрическими фильтрами выделяются СЧ-ВЧ с басовыми «хвостиками», не перегружающими СЧ-ВЧ тракт, но обеспечивающими плавный переход на подбас. Басы с СЧ «хвостиками» объединяются и подаются на отдельный УМЗЧ для сабвуфера. Дофильтровываются СЧ, чтобы не портилось стерео, в сабвуфере уже акустически: подбасовый динамик, ставят, напр., в перегородку между резонаторными камерами сабвуфера, не выпускающими СЧ наружу, см. справа на рис.

К УМЗЧ для сабвуфера предъявляется ряд специфических требований, из которых «чайники» главным считают возможно большую мощность. Это совершенно неправильно, если, скажем, расчет акустики под комнату дал для одной колонки пиковую мощность W, то мощность сабвуфера нужна 0,8(2W) или 1,6W. Напр., если для комнаты подходят АС S-30, то сабвуфер нужен 1,6х30=48 Вт.

Гораздо важнее обеспечить отсутствие фазовых и переходных искажений: пойдут они – перескок звука обязательно будет. Что касается КНИ, то он допустим до 1% Собственные искажения басов такого уровня не слышны (см. кривые равной громкости), а «хвосты» их спектра в лучше всего слышимой СЧ области не выберутся из сабвуфера наружу.

Во избежание фазовых и переходных искажений усилитель для сабвуфера строят по т. наз. мостовой схеме: выходы 2-х идентичных УМЗЧ включают встречно через динамик; сигналы на входы подаются в противофазе. Отсутствие фазовых и переходных искажений в мостовой схеме обусловлено полной электрической симметрией путей выходного сигнала. Идентичность усилителей, образующих плечи моста, обеспечивается применением спаренных УМЗЧ на ИМС, выполненных на одном кристалле; это, пожалуй, единственный случай, когда усилитель на микросхемах лучше дискретного.

Примечание: мощность мостового УМЗЧ не удваивается, как думают некоторые, она определяется напряжением питания.

Пример схемы мостового УМЗЧ для сабвуфера в комнату до 20 кв. м (без входных фильтров) на ИМС TDA2030 дан на рис. слева. Дополнительная отфильтровка СЧ осуществляется цепями R5C3 и R’5C’3. Площадь радиатора TDA2030 – от 400 кв. см. У мостовых УМЗЧ с открытым выходом есть неприятная особенность: при разбалансе моста в токе нагрузки появляется постоянная составляющая, способная вывести из строя динамик, а схемы защиты на подбасах часто глючат, отключая динамик, когда не надо. Поэтому лучше защитить дорогую НЧ головку «дубово», неполярными батареями электролитических конденсаторов (выделено цветом, а схема одной батареи дана на врезке.

Немного об акустике

Акустическое оформление сабвуфера – особая тема, но раз уж здесь дан чертеж, то нужны и пояснения. Материал корпуса – МДФ 24 мм. Трубы резонаторов – из достаточно прочного не звенящего пластика, напр., полиэтилена. Внутренний диаметр труб – 60 мм, выступы внутрь 113 мм в большой камере и 61 в малой. Под конкретную головку громкоговорителя сабвуфер придется перенастроить по наилучшему басу и, одновременно, по наименьшему влиянию на стереоэффект. Для настройки трубы берут заведомо большей длины и, задвигая-выдвигая, добиваются требуемого звучания. Выступы труб наружу на звук не влияют, их потом отрезают. Настройка труб взаимозависима, так что повозиться придется.

Усилитель для наушников

Усилитель для наушников делают своими руками чаще всего по 2-м причинам. Первая – для слушания «на ходу», т.е. вне дома, когда мощности аудиовыхода плеера или смартфона не хватает для раскачки «пуговок» или «лопухов». Вторая – для высококлассных домашних наушников. Hi-Fi УМЗЧ для обычной жилой комнаты нужен с динамикой до 70-75 дБ, но динамический диапазон лучших современных стереонаушников превышает 100 дБ. Усилитель с такой динамикой стоит дороже некоторых автомобилей, а его мощность будет от 200 Вт в канале, что для обычной квартиры слишком много: прослушивание на сильно заниженной против номинальной мощности портит звук, см. выше. Поэтому имеет смысл сделать маломощный, но с хорошей динамикой отдельный усилитель именно для наушников: цены на бытовые УМЗЧ с таким довеском завышены явно несуразно.

Схема простейшего усилителя для наушников на транзисторах дана на поз. 1 рис. Звук – разве что для китайских «пуговок», работает в классе B. Экономичностью тоже не отличается – 13-мм литиевых батареек хватает на 3-4 часа при полной громкости. На поз. 2 – TDAшная классика для наушников «на ход». Звук, впрочем, дает вполне приличный, до среднего Hi-Fi смотря по параметрам оцифровки трека. Любительским усовершенствованиям обвязки TDA7050 несть числа, но перехода звука на следующий уровень классности пока не добился никто: сама «микруха» не позволяет. TDA7057 (поз. 3) просто функциональнее, можно подключать регулятор громкости на обычном, не сдвоенном, потенциометре.

УМЗЧ для наушников на TDA7350 (поз. 4) рассчитан уже на раскачку хорошей индивидуальной акустики. Именно на этой ИМС собраны усилители для наушников в большинстве бытовых УМЗЧ среднего и высокого класса. УМЗЧ для наушников на KA2206B (поз. 5) считается уже профессиональным: его максимальной мощности в 2,3 Вт хватает и для раскачки таких серьезных изодинамических «лопухов», как ТДС-7 и ТДС-15.

Для тех, у кого еще остались в старых запасах транзисторы серии ГТ и П, предлагаю для повторения свою конструкцию УНЧ на германиевых транзисторах П210. Схема была взята мною с не помню за какой год брошюры "в помощь радиолюбителю". В оригинале схемы использовались транзисторы МП42, МП37 и П217.

С этим комплектом заявленная номинальная мощность достигала порядка 15Вт. Имея в своих запасах с пол сотни германиевых транзисторов П210 я долгое время перекладывал их из одного угла в другой. И вот, однажды начитавшись форумов и всевозможных статей про усилители на германиевых транзисторах, решил наконец-то собрать УНЧ на этих самых П210х.

Много положительных отзывов, но и не меньше критики было прочитано о применении транзисторов ГТ серии в усилителях мощности низкой частоты. Дабы проверить написанное и дать свою оценку - занялся сборкой. Было собрано два варианта схемы: на пяти транзисторах по классической топологии (Рис.2) и схема с дифкаскадом(Рис.1). В конечном итоге предпочтение было отдано схеме с дифкаскадом.

Рис. 1. Принципиальная схема усилителя мощности низкой частоты (УМЗЧ) на германиевых транзисторах. Вариант 1. Схема с дифкаскадом.

Рис. 2. Схема усилителя низкой частоты (УНЧ) на германиевых транзисторах. Вариант 2. УМЗЧ на пяти транзисторах.

Несколько слов о первой схеме (рис.2.) на пяти транзисторах: настройки никакой практически не требует, если детали все исправны то работает сразу. Настройка сводится к установке половины напряжения питания на выходе. Схема достаточно надежна.

Для полного отсутствия фона переменного тока достаточно в выпрямителе емкости в 4700мкФ. При напряжении питания 42В, максимальная выходная мощность усилителя достигала 38 Ватт. Более точно не измерял. Из достоинств - отсутствуют искажения типа ступенька, именно германиевые транзисторы в такой схеме имеют этот плюс.

Из недостатков - режимы работы оконечных транзисторов близки к предельно допустимым, резко снижают надежность последних. При длительной работе примерно в 75 процентов от максимальной мощности, оконечные транзисторы довольно сильно нагреваются. Радиаторы что на фото нагревались до 60 градусов.

Нужно отметить,что максимальная температура до пробоя перехода П210 по паспорту составляет примерно 85 градусов (у кремния для примера эта граница равна 125 градусов).

Вторая схема(рис. 1.) с дифкаскадом имеет ряд преимуществ перед схемой на 5ти транзисторах, а именно: установка тока покоя (мною выставлялся 200мА), температурный режим более мягкий. При питании от двухполярного источника 35В выходная мощность усилителя мощности составляла 50 Ватт. Поднимать напряжение питания выше 35 Вольт не имеет смысла, поскольку максимальная рассеиваемая мощность на коллекторе П210 с буквой Б и В приравнивается 45Ватт.

Если у вас есть П210 с буквой Ш, то есть смысл поднять питание до 42 Вольт, тогда можно будет получить 60 - 65 ватт на выходе усилителя. В процессе сборки мною был опробован вариант с двумя парами выходных транзисторов П210Б - удалось получить 80 Ватт можности на выходе!!

Для германия это довольно значительная цифра, но в силу ряда недостатков - большущие радиаторы, приличный нагрев, эта проба так и осталась пробой, да и зачем столько выхода для дома.

Схема надежно работает уже в течении двух лет. Некоторые номиналы резисторов были пересчитаны мною под соответствующие транзисторы. Резисторы в оконечном каскаде рекомендую поставить мощностью не менее 5Ватт, можно и мощнее, еще лучше будет если вы будете использовать акустику мощностью 100Ватт, то 5 Ваттных резисторов только-только хватит.

Если к примеру поставить резисторы на 3Вата то они попросту при половине мощности лопнут или сгорят в уголь, что приведет к пробою транзистора ГТ404 в первую очередь и наверняка вылетит один из выходных транзисторов. Поэтому ставим не скупясь на мощность резистора - лучше всего проволочные.

Из недостатков: столкнулся с проблемой фона переменного тока. Для меня так и осталось загадкой почему в схеме на пяти транзисторах емкости в 4700мкФ достаточно, а в этой схеме явно мало. Пришлось разориться и купить два конденсатора на 15000х63 вольта. Мне эти, казалось бы простые детали обошлись в 1500 рублей. Конечно можно было собрать батарею из конденсаторов на 2000мкФх50в, коих полная коробка, но они старые советские и в разы больше импортных, размер бы вышел в пол корпуса самого усилителя.

Поэтому и были куплены импортные, но кому как нравится конечно, все зависит от того в какой корпус вы все это хотите затолкать. В итоге две емкости по 15000 хватило вполне что бы полностью убрать фон переменного тока.

Обе схемы работают в классе АВ. Для лучшего отвода тепла мною был установлен куллер среднего размера от компа, запитал его через гасящий резистор, так чтобы на куллер приходилось 8 Вольт. Шума от куллера не наблюдается. Этого более чем достаточно - на максимальной мощности в течении часа, выше 45 градусов радиаторы не нагреваются. Если память не подводит, площадь у радиаторов на фото 200см квадратных.

Настройка этой схемы так же сводится к установке половины питания на выходе подстроечным резистором в дифкаскаде и тока покоя подстроечником в базе МП41Б.

Теперь несколько слов о предварительном усилителе. Мною приложены схемы предложенные автором из брошюры, но мне они показались сомнительными. Поэтому был собран простейший каскад на одном транзисторе МП39б (малошумящий).

Рис. 3. Схема активного регулятора громкости с тонкомпенсацией.

Рис. 4. Схема простого тонкомпенсированного регулятора громкости.

Этот каскад немного видно на фото в левой части корпуса. Схему последнего не привожу, поскольку рекомендовать именно ее нет смысла - данный каскад целесообразно делать под имеющийся источник сигнала.

Обязательное условие для предварительного усилителя - схема должна быть с общим эмиттером. Конечно же можно применить и микросхемы, но как это все будет вместе работать - не проверял. Поскольку у микросхем общий минус, а в схеме унч общий плюс то велика вероятность того что от одного источника оконечный и предварительный каскад работать корректно не будут.

В качестве блока питания использован обычный трансформатор ТС-160 с перемотанной вторичной обмоткой. Один канал тянет на максимуме до 3,5 ампер. Исходя из этого вторичка должна обеспечивать ка минимум 6 ампер. В выпрямителе использованы диоды Д242 так как других не было. Но вполне хватит и КД202.

Вот в краце рассказал об основных моментах сборки и настройки усилителя. Ну и в конце еще добавлю несколько слов о качестве и окраске звучания. В общем то результатом доволен! А результат оказался неожиданным - очень приятное для уха звучание и нужно отметить довольно глубокий и сильный НЧ спектр на этих транзисторах.

Слушать можно хоть круглые сутки, для сравнения была собрана та же съема но только на транзисторах КТ-серии, и вроде бы звук тот же, а все равно что-то такое механическое и суховатое присутствует в звуке на кремнивых транзисторах. На КТшках низкие частоты вроде тоже не плохие, но что-то не уловимое ухом все же пропало.

В целом, людям имеющим острый слух и, так сказать чуткое ухо, разница будет очевидна. При всех своих недостатках германиевое звучания намного естественней и мягче нежели кремниевое звучание. Не относя себя к категории аудиофилов, среди которых не мало людей с маниакальными идеями и убеждениями, а в качестве обычного любителя меломана с музыкальным острым слухом, я выбрал вариант в германиевом исполнении.

В предыдущих своих статьях я выкладывал таблицу свойств германия и кремния из которой видно что при всех минусах, германий очевиден в своих преимуществах перед кремнием.

И в качестве заключения скажу: желающие повторить конструкцию, дерзайте!! оно того стоит!

В конце позапрошлого века немецкий химик К.А. Винклер открыл элемент, существование которого заранее было предсказано Д.И. Менделеевым. А 1 июля 1948 г. в подвале газеты «Нью-Йорк Таймс» появилась короткая заметка под заголовком «Создание транзистора». В ней сообщалось об изобретении «электронного прибора, способного заменить в радиотехнике обычные электровакуумные лампы».

Разумеется, первые транзисторы были германиевыми, и именно этот элемент произвел настоящий переворот в радиотехнике. Не будем спорить, выиграли ли ценители музыки при переходе от ламп к транзисторам - дискуссии эти уже успели порядком поднадоесть. Давайте лучше зададим себе другой, не менее актуальный вопрос: пошел ли на пользу звуку следующий виток эволюции, когда кремниевые приборы пришли на смену германиевым? Век последних был недолог, и они не оставили после себя, подобно лампам, ощутимого звукового наследия. Сейчас германиевые транзисторы не выпускаются ни в одной стране, и о них уже вспоминают крайне редко. А зря. Я считаю, что любой кремниевый транзистор, будь он биполярный или полевой, высокочастотный или низкочастотный, малосигнальный или мощный, менее пригоден для высококачественного звуковоспроизведения, чем германиевый. Для начала давайте рассмотрим физические свойства обоих элементов.*

* Публикуется по H.J.Fisher, Transistortechnik fur Den Funkamateur. Перевод А.В. Безрукова, М., МРБ, 1966.

Свойства Германий Кремний
Плотность, г/см 3 5,323 2,330
Атомный вес 72,60 28,08
Количество атомов в 1 см 3 4,42*10 22 4,96*10 22
Ширина запрещенной зоны, ЭВ 0,72 1,1
Диэлектрическая постоянная 16 12
Температура плавления, °С 937,2 1420
Теплопроводность, кал/см X сек X град 0,14 0,20
Подвижность электронов, см 2 /сек*В 3800 1300
Подвижность дырок, см 2 /сек*В 1800 500
Продолжительность жизни электрона, мксек 100 - 1000 50 - 500
Длина свободного пробега электрона, см 0,3 0,1
Длина свободного пробега дырки, см 0,07 - 0,02 0,02 - 0,06

Из таблицы видно, что подвижность электронов и дырок, продолжительность жизни электронов, а также длина свободного пробега электронов и дырок значительно выше у германия, а ширина запрещенной зоны ниже, чем у кремния. Известно также, что падение напряжения на переходе p-n составляет 0,1 - 0,3 В, а на n-p - 0, 6 - 0,7 В, из чего можно сделать вывод, что германий является гораздо лучшим «проводником», чем кремний, а следовательно, и каскад усиления на транзисторе p-n-p имеет значительно меньшие потери звуковой энергии, чем аналогичный на n-p-n. Возникает вопрос: почему же выпуск германиевых полупроводников был прекращен? Прежде всего потому, что по некоторым критериям Si намного предпочтительнее, поскольку может работать при температуре до 150 град. (Ge - 85), да и частотные свойства у него несравненно лучше. Вторая причина чисто экономическая. Запасы кремния на планете практически безграничны, в то время как германий - довольно редкий элемент, технология получения и очистки которого значительно дороже.

Между тем, для применения в домашней аудиотехнике упомянутые преимущества кремния абсолютно неочевидны, а свойства германия, наоборот, крайне привлекательны. Кроме того, в нашей стране германиевых транзисторов хоть завались, да и цены на них просто смешные.**

** Предвижу, что после выхода этой статьи цены на радиорынках могут подскочить, как это уже произошло с некоторыми типами ламп и микросхем - Прим. ред.

Итак, приступим к рассмотрению схем усилителей на германиевых полупроводниках. Но сначала несколько принципов, соблюдение которых исключительно важно для получения действительно высокого качества звучания.

  1. В схеме усилителя не должно быть ни одного кремниевого полупроводника.
  2. Монтаж производится объемным навесным способом, с максимальным использованием выводов самих деталей. Печатные платы значительно ухудшают звучание.
  3. Количество транзисторов в усилителе должно быть минимально возможным.
  4. Транзисторы следует отбирать попарно не только для верхнего и нижнего плеча выходного каскада, но и для обоих каналов. Стало быть, придется отобрать по 4 экземпляра с возможно близкими значениями h21э (не менее 100) и минимальным Iко.
  5. Сердечник силового трансформатора изготавливается из пластин Ш с сечением не менее 15 см 2 . Очень желательно предусмотреть экранную обмотку, которую следует заземлить.

Схема №1, минималистская

Принцип не нов, такая схемотехника была весьма популярна в шестидесятые годы. На мой взгляд, это чуть ли не единственная конфигурация бестрансформаторного усилителя, соответствующая аудиофильским канонам. Благодаря своей простоте позволяет добиться высокого качества звучания при минимальных затратах. Автором она была лишь адаптирована к современным требованиям High End Audio.

Настройка усилителя весьма проста. Сначала устанавливаем резистором R2 половину напряжения питания на «минусе» конденсатора С7. Затем подбираем R13 так, чтобы миллиамперметр, включенный в коллекторную цепь выходных транзисторов, показал ток покоя 40 - 50 мА, не больше. При подаче сигнала на вход следует убедиться в отсутствии самовозбуждения, хотя оно и маловероятно. Если все же на экране осциллографа заметны признаки ВЧ-генерации, попробуйте увеличить емкость конденсатора С5. Для устойчивой работы усилителя при изменении температуры диоды VD1, 2, должны быть смазаны теплопроводной пастой и прижаты к одному из выходных транзисторов. Последние устанавливаются на теплоотводах площадью не менее 200 см 2 .

Схема №2, усовершенствованная

В первой схеме был квазикомплементарный выходной каскад, поскольку промышленность 40 лет назад не выпускала мощных германиевых транзисторов со структурой n-p-n. Комплементарные пары ГТ703 (p-n-p) и ГТ705 (n-p-n) появились лишь в 70-х, что позволило усовершенствовать схему выходного каскада. Но мир далек от совершенства - у перечисленных выше типов максимальный ток коллектора всего 3,5 А (у П217В Iк max = 7,5 A). Поэтому применить их в схеме можно, лишь поставив по два в плечо. Этим, собственно, и отличается №2, разве что полярность блока питания противоположна. И усилитель напряжения (VT1), соответственно, реализован на транзисторе другой проводимости.

Настраивается схема точно так же, даже ток покоя выходного каскада такой же.

Коротко о блоке питания

Для получения высокого качества звучания придется поискать в закромах 4 германиевых диода Д305. Другие категорически не рекомендуются. Соединяем их мостом, шунтируем слюдой КСО по 0,01 мкФ, а затем ставим 8 конденсаторов 1000 мкФ X 63 В (те же К50-29 или Philips), которые тоже шунтируем слюдой. Наращивать емкость не надо - тональный баланс уходит вниз, теряется воздух.

Параметры обеих схем примерно одинаковы: выходная мощность 20 Вт на нагрузке 4 Ом при искажениях 0,1 - 0,2%. Разумеется, эти цифры мало что говорят о звучании. Уверен в одном - послушав грамотно сделанный по одной из этих схем усилитель, вы вряд ли вернетесь к кремниевым транзисторам.

Апрель 2003 г.

От редакции:

Мы послушали у Жана прототип первого варианта усилителя. Первое впечатление - необычно. Звучание отчасти транзисторное (хороший контроль нагрузки, четкий бас, убедительный драйв), отчасти ламповое (отсутствие жесткости, воздух, деликатность, если хотите). Усилитель заводит, но не раздражает назойливостью. Мощности хватает, чтобы без малейших признаков клиппинга раскачать до невыносимой громкости напольную акустику с чувствительностью 90 дБ. Что интересно - тональный баланс на разных уровнях почти не меняется.

Это результат продуманной конструкции и тщательно подобранных деталей. Учитывая, что комплект транзисторов обойдется рублей в пятьдесят (хотя, если не очень повезет, для подбора пар может потребоваться несколько десятков, смотря какая партия попадется), не экономьте на других элементах, особенно конденсаторах.

Буквально за пару часов на макетной плате был собран один канал усилителя для анализа схемы. На выходе устанавливались американские германиевые транзисторы Altec AU108 с граничной частотой 3 МГц. При этом полоса пропускания по уровню 0,5 дБ была 10 Гц - 27 кГц, искажения на мощности 15 Вт примерно 0,2%. Доминировала 3-я гармоника, но наблюдались выбросы и более высоких порядков, вплоть до 11-го. С транзисторами ГТ-705Д (Fгр. = 10 кГц) ситуация была несколько иной: полоса сузилась до 18 кГц, зато гармоник выше 5-й на экране анализатора вообще не было видно. Изменилось и звучание - оно как-то потеплело, смягчилось, но искрящееся прежде «серебро» поблекло. Так что первый вариант можно рекомендовать для акустики с «мягкими» пищалками, а второй - с титановыми или пьезоизлучателями. Характер искажений зависит от качества конденсаторов С7 и С6 на схемах 1 и 2 соответственно. А вот их шунтирование слюдой и пленкой не очень заметно на слух.

К недостаткам схемы следует отнести малое входное сопротивление (около 2 кОм в верхнем положении регулятора громкости), которое может перегрузить выходной буфер источника сигнала. Второй момент - уровень искажений сильно зависит от характеристик и режима первого транзистора. Чтобы повысить линейность входного каскада, имеет смысл ввести две вольт-добавки для питания коллекторной и эмиттерной цепи T1 . Для этого делаются два дополнительных независимых стабилизатора с выходным напряжением 3 В. «Плюс» одного соединяется с шиной питания - 40 В (все пояснения даются для схемы 1, для другой схемы полярность меняется на противоположную), а «минус» подается на верхний вывод R4. Резистор R7 и конденсатор C6 из схемы исключаются. Второй источник включается так: «минус» на землю, а «плюс» - на нижние выводы резисторов R3 и R6. Конденсатор C4 при этом остается между эмиттером и землей. Возможно, стоит поэкспериментировать со стабилизированным питанием. Любые изменения в питании и самой схеме усилителя радикально влияют на звук, что открывает широкие возможности для твикинга.

Таблица 1. Детали усилителя
Сопротивления
R1 10k переменное, ALPS тип A
R2 68k подстроечное CП4-1
R3 3k9 1/4 w ВС, С1-4
R4 200 1/4 w -//-
R5 2k 1/4 w -//-
R6 100 1/4 w -//-
R7 47 1 w -//-
R8,R9 39 1 w -//-
R10, R11 1 5 w проволочные, С5 - 16МВ
R12 10k 1/4 w ВС, С1-4
R13 20 1/4 w -//- подбирается при настройке
Конденсаторы
С1 47 мкФ х 16 В К50-29, Philips
С2 100 мкФ х 63 В -//-
С3 1000 пФ КСО, СГМ
С4 220 мкФ х 16 В К50-29, Philips
С5 330 пФ
С6 1000 мкФ х 63 В К50-29, Philips
С7 4 х 1000 мкФ х 63 В -//-
Полупроводники
VD1, VD2 Д311
VT1, VT2 ГТ402Г
VT3 ГТ404Г
VT4, VT5 П214В
Таблица 2. Детали усилителя
Сопротивления
R1 10k переменное, ALPS тип A
R2 68k подстроечное, CП4-1
R3 3k9 1/4 w ВС, С1-4
R4 200 1/4 w -//-
R5 2k 1/4 w -//-
R6 100 1/4 w -//-
R7 47 1 w -//-
R8 20 1/4 w -//-, подбирается при настройке
R9 82 1 w -//-
R10 - R13 2 5 w проволочные, С5 - 16МВ
R14 10k 1/4 w ВС, С1-4
Конденсаторы
С1 47 мкФ х 16 В К50-29, Philips
С2 100 мкФ х 63 В -//-
С3 1000 мкФ х 63 В К50-29, Philips
С4 1000 пФ КСО, СГМ
С5 220 мкФ х 16 В К50-29, Philips
С6 4 х 1000 мкФ х 63 В -//-
С7 330 пФ КСО, СГМ, подбирается при настройке
Полупроводники
VD1, VD2 Д311
VT1, VT2 ГТ404Г
VT3 ГТ402Г
VT4, VT6 ГТ705Д
VT5, VT7 ГТ703Д