Температурный коэффициент удельного электрического сопротивления. Температурный коэффициент сопротивления сплавов

Электрическое сопротивление проводника в общем случае зависит от материала проводника, от его длины и от поперечного сечения, или более кратко - от удельного сопротивления и от геометрических размеров проводника. Данная зависимость общеизвестна и выражается формулой:

Известен каждому и , из которого видно, что ток тем меньше, чем сопротивление выше. Таким образом, если сопротивление проводника постоянно, то с ростом приложенного напряжения ток должен бы линейно расти. Но в реальности это не так. Сопротивление проводников не постоянно.



За примерами далеко ходить не надо. Если к регулируемому блоку питания (с вольтметром и амперметром) подключить лампочку, и постепенно повышать напряжение на ней, доводя до номинала, то легко заметить, что ток растет не линейно: с приближением напряжения к номиналу лампы, ток через ее спираль растет все медленнее, причем лампочка светится все ярче.


Нет такого, что с увеличением вдвое приложенного к спирали напряжения, вдвое возрос и ток. Закон Ома как-будто не выполняется. На самом деле закон Ома выполняется, и точно, просто сопротивление нити накала лампы непостоянно, оно зависит температуры.


Вспомним, с чем связана высокая электрическая проводимость металлов. Она связана с наличием в металлах большого количества носителей заряда - составных частей тока - . Это электроны, образующиеся из валентных электронов атомов металла, которые для всего проводника являются общими, они не принадлежат каждый отдельному атому.

Под действием приложенного к проводнику электрического поля, свободные электроны проводимости переходят из хаотичного в более-менее упорядоченное движение - образуется электрический ток. Но электроны на своем пути встречают препятствия, неоднородности ионной решетки, такие как дефекты решетки, неоднородная структура, вызванные ее тепловыми колебаниями.

Электроны взаимодействуют с ионами, теряют импульс, их энергия передается ионам решетки, переходит в колебания ионов решетки, и хаос теплового движения самих электронов усиливается, от того проводник и нагревается при прохождении по нему тока.

В диэлектриках, полупроводниках, электролитах, газах, неполярных жидкостях - причина сопротивления может быть иной, однако закон Ома, очевидно, не остается постоянно линейным.

Таким образом, для металлов, рост температуры приводит к еще большему возрастанию тепловых колебаний кристаллической решетки, и сопротивление движению электронов проводимости возрастает. Это видно по эксперименту с лампой: яркость свечения увеличилась, но ток возрос слабее. То есть изменение температуры повлияло на сопротивление нити накаливания лампы.

В итоге становится ясно, что сопротивление зависит почти линейно от температуры. А если принять во внимание, что при нагревании геометрические размеры проводника меняются слабо, то и удельное электрическое сопротивление почти линейно зависит от температуры. Зависимости эти можно выразить формулами:

Обратим внимание на коэффициенты. Пусть при 0°C сопротивление проводника равно R0, тогда при температуре t°C оно примет значение R(t), и относительное изменение сопротивления будет равно α*t°C. Вот этот коэффициент пропорциональности α и называется температурным коэффициентом сопротивления . Он характеризует зависимость электрического сопротивления вещества от его текущей температуры.

Данный коэффициент численно равен относительному изменению электрического сопротивления проводника при изменении его температуры на 1К (на один градус Кельвина, что равноценно изменению температуры на один градус Цельсия).

Для металлов ТКС (температурный коэффициент сопротивления α) хоть и относительно мал, но всегда больше нуля, ведь при прохождении тока электроны тем чаще сталкиваются с ионами кристаллической решетки, чем выше температура, то есть чем выше тепловое хаотичное их движение и чем выше их скорость. Сталкиваясь в хаотичном движении с ионами решетки, электроны металла теряют энергию, что мы и видим в результате - сопротивление при нагревании проводника возрастает. Данное явление используется технически в .

Итак, температурный коэффициент сопротивления α характеризует зависимость электрического сопротивления вещества от температуры и измеряется в 1/К - кельвин в степени -1. Величину с обратным знаком называют температурным коэффициентом проводимости.

Что касается чистых полупроводников, то для них ТКС отрицателен, то есть сопротивление снижается с ростом температуры, это связано с тем, что с ростом температуры все больше электронов переходят в зону проводимости, растет при этом и концентрация дырок. Этот же механизм свойственен для жидких неполярных и твердых диэлектриков.

Полярные жидкости свое сопротивление резко уменьшают с ростом температуры из-за снижения вязкости и роста диссоциации. Это свойство применяется для защиты электронных ламп от разрушительного действия больших пусковых токов.

У сплавов, легированных полупроводников, газов и электролитов тепловая зависимость сопротивления более сложна чем у чистых металлов. Сплавы с очень малым ТКС, такие как манганин и константан, применяют в .

Температурный коэффициент сопротивления (ТКС) – это величина, характеризующая относительное изменение сопротивления резистора при изменении температуры на 1°С. На практике пользуются средним значением температурного коэффициента сопротивления, который определяется в интервале рабочих температур либо с помощью специального измерителя ТКС, либо путем измерения трех значений сопротивлений (при температуре 20 °С, крайней положительной и крайней отрицательной температурах) и последующим вычислением ТКС по формуле

где ТКС - температурный коэффициент сопротивления, 1/°С;

R – алгебраическая разность между сопротивлением, измеренным при заданных положительной или отрицательной температурах, и сопротивлением, измеренным при нормальной температуре;

R 1 – сопротивление резистора, измеренное при нормальной температуре;

t – алгебраическая разность между заданной положительной или заданной отрицательной температурой и нормальной температурой.

Собственные шумы

Собственные шумы резисторов складываются из тепловых и токовых шумов. Уровень шумов измеряется электродвижущей силой (ЭДС) шумов.

Возникновение тепловых шумов связано с тепловым движением электронов в резистивном элементе.

Помимо тепловых шумов, уровень которых определяется в основном температурой и сопротивлением резистивного элемента и не зависит от протекающего тока, в резистивном элемента при включении его под электрическую нагрузку возникают специфические токовые шумы, обусловленные флюктуациями контактных сопротивлений между проводящими частицами, а также трещинами и неоднородностями резистивного элемента. Эти флюктуации являются следствием изменения площади контактирования отдельных токопроводящих частей структуры элемента, перераспределения напряжения на отдельных зазорах между этими частицами, возникновения новых проводящих цепочек в относительно больших зазорах под действием высокой напряженности электрического поля и т.п.



В полупроводниковых материалах причиной токовых шумов могут быть колебания проводимости, связанные с процессами возбуждения и рекомбинации носителей тока и другими процессами.

Токовые шумы при заданном значении сопротивления и определенном значении напряжении в значительной степени зависят от материала и конструкции резистивного элемента и наиболее характерны для непроволочных резисторов. Обычно они значительно больше тепловых шумов. Частотный спектр энергии токового шума также непрерывный, но в отличие от теплового характеризуется уменьшением интенсивности высокочастотных составляющих.

Уровень шумов определяют отношением действующего значения переменной составляющей напряжения шумов к приложенному постоянному напряжению и выражают в микровольтах на вольт

Уровень собственных шумов резисторов тем выше, чем больше температура и напряжение. Шумы накладывают ограничения на чувствительность схем и создают помехи при воспроизведении полезного сигнала.

Значение ЭДС шумов для непроволочных резисторов лежит в пределах от долей единиц мкВ/В, а для отдельных типов и до десятков мкВ/В.

Металл

Удельное сопротивление ρ при 20 ºС, Ом*мм²/м

Температурный коэффициент сопротивления α, ºС -1

Алюминий

Железо (сталь)

Константан

Манганин

Температурный коэффициент сопротивления α показывает на сколько увеличивается сопротивление проводника в 1 Ом при увеличении температуры (нагревании проводника) на 1 ºС.

Сопротивление проводника при температуре t рассчитывается по формуле:

r t = r 20 + α* r 20 *(t - 20 ºС)

r t = r 20 *,

где r 20 – сопротивление проводника при температуре 20 ºС, r t – сопротивление проводника при температуре t.

Плотность тока

Через медный проводник с площадью поперечного сечения S = 4 мм² протекает ток I = 10 А. Какова плотность тока?

Плотность тока J = I/S = 10 А/4 мм² = 2.5 А/мм².

[По площади поперечного сечения 1 мм² протекает ток I = 2.5 А; по всему поперечному сечению S протекает ток I = 10 А].

По шине распределительного устройства прямоугольного поперечного сечения (20х80) мм² проходит ток I = 1000 А. Какова плотность тока в шине?

Площадь поперечного сечения шины S = 20х80 = 1600 мм². Плотность тока

J = I/S = 1000 A/1600 мм² = 0.625 А/мм².

У катушки провод имеет круглое сечение диаметром 0.8 мм и допускает плотность тока 2.5 А/мм². Какой допустимый ток можно пропустить по проводу (нагрев не должен превысить допустимый)?

Площадь поперечного сечения провода S = π * d²/4 = 3/14*0.8²/4 ≈ 0.5 мм².

Допустимый ток I = J*S = 2.5 А/мм² * 0.5 мм² = 1.25 А.

Допустимая плотность тока для обмотки трансформатора J = 2.5 А/мм². Через обмотку проходит ток I = 4 А. Каким должно быть поперечное сечение (диаметр) круглого сечения проводника, чтобы обмотка не перегревалась?

Площадь поперечного сечения S = I/J = (4 А) / (2.5 А/мм²) = 1.6 мм²

Этому сечению соответствует диаметр провода 1.42 мм.

По изолированному медному проводу сечением 4 мм² проходит максимально допустимый ток 38 А (см. таблицу). Какова допустимая плотность тока? Чему равны допустимые плотности тока для медных проводов сечением 1, 10 и 16 мм²?

1). Допустимая плотность тока

J = I/S = 38 А / 4мм² = 9.5 А/мм².

2). Для сечения 1 мм² допустимая плотность тока (см. табл.)

J = I/S = 16 А / 1 мм² = 16 А/мм².

3). Для сечения 10 мм² допустимая плотность тока

J = 70 A / 10 мм² = 7.0 А/мм²

4). Для сечения 16 мм² допустимая плотность тока

J = I/S = 85 А / 16 мм² = 5.3 А/мм².

Допустимая плотность тока с увеличением сечения падает. Табл. действительна для электрических проводов с изоляцией класса В.

Задачи для самостоятельного решения

    Через обмотку трансформатора должен протекать ток I = 4 А. Какое должно быть сечение обмоточного провода при допустимой плотности тока J = 2.5 А/мм²? (S = 1.6 мм²)

    По проводу диаметром 0.3 мм проходит ток 100 мА. Какова плотность тока? (J = 1.415 А/мм²)

    По обмотке электромагнита из изолированного провода диаметром

d = 2.26 мм (без учёта изоляции) проходит ток 10 А. Какова плотность

тока? (J = 2.5 А/мм²).

4. Обмотка трансформатора допускает плотность тока 2.5 А/мм². Ток в обмотке равен 15 А. Какое наименьшее сечение и диаметр может иметь круглый провод (без учёта изоляции)? (в мм²; 2.76 мм).

На единицу.

Температурный коэффициент сопротивления характеризует зависимость электрического сопротивления от температуры и измеряется в кельвинах в минус первой степени (K −1).

Также часто применяется термин «температурный коэффициент проводимости» . Он равен обратному значению коэффициента сопротивления.

Температурная зависимость сопротивления металлических сплавов , газов , легированных полупроводников и электролитов носит более сложный характер.


Wikimedia Foundation . 2010 .

  • Дворец Корнякта
  • Частная жизнь Шерлока Холмса (фильм)

Смотреть что такое "Температурный коэффициент электрического сопротивления" в других словарях:

    температурный коэффициент удельного электрического сопротивления проводникового материала - Отношение производной удельного электрического сопротивления проводникового материала по температуре к этому сопротивлению. [ГОСТ 22265 76] Тематики материалы проводниковые … Справочник технического переводчика

    Температурный коэффициент удельного электрического сопротивления проводникового материала - 29. Температурный коэффициент удельного электрического сопротивления проводникового материала Отношение производной удельного электрического сопротивления проводникового материала по температуре к этому сопротивлению Источник: ГОСТ 22265 76:… …

    ГОСТ 6651-2009: Государственная система обеспечения единства измерений. Термопреобразователи сопротивления из платины, меди и никеля. Общие технические требования и методы испытаний - Терминология ГОСТ 6651 2009: Государственная система обеспечения единства измерений. Термопреобразователи сопротивления из платины, меди и никеля. Общие технические требования и методы испытаний оригинал документа: 3.18 время термической реакции … Словарь-справочник терминов нормативно-технической документации

    ГОСТ Р 8.625-2006: Государственная система обеспечения единства измерений. Термометры сопротивления из платины, меди и никеля. Общие технические требования и методы испытаний - Терминология ГОСТ Р 8.625 2006: Государственная система обеспечения единства измерений. Термометры сопротивления из платины, меди и никеля. Общие технические требования и методы испытаний оригинал документа: 3.18 время термической реакции: Время … Словарь-справочник терминов нормативно-технической документации

    Термометр сопротивления - Условное графическое обозначение термометра сопротивления Термометр сопротивления электронный прибор, предназначенный для измерения температуры и основанный на зависимости электрического сопротивления … Википедия

    Термометр сопротивления - прибор для измерения температуры (См. Температура), принцип действия которого основан на изменении электрического сопротивления чистых металлов, сплавов и полупроводников с температурой (на увеличении сопротивления R с повышением… …

    Алюминий - (Aluminum) Сплавы и производство алюминия, общая характеристика Al Физические и химические свойства алюминия, получение и нахождение в природе Al, применение алюминия Содержание Содержание Раздел 1. Название и история открытия. Раздел 2. Общая… … Энциклопедия инвестора

    Тепловой расходомер - Тепловой расходомер расходомер, в котором для измерения скорости потока жидкости или газа используется эффект переноса тепла от нагретого тела подвижной средой. Различают калориметрические и термоанемометрические расходомеры. Содержание 1… … Википедия

    Алюминий - 13 Магний ← Алюминий → Кремний B Al ↓ Ga … Википедия

    Железо - (латинское Ferrum) Fe, химический элемент VIII группы периодической системы Менделеева; атомный номер 26, атомная масса 55,847; блестящий серебристо белый металл. Элемент в природе состоит из четырёх стабильных изотопов: 54Fe (5,84%),… … Большая советская энциклопедия

На результаты измерений удельного сопротивления сильно влияют усадочные раковины, газовые пузыри, включения и другие дефекты. Более того, рис. 155 показывает, что малые количества примеси, входящей в твердый раствор, также оказывают большое влияние на измеренную проводимость. Поэтому для измерений электросопротивления изготовить удовлетворительные образцы значительно труднее, чем для

дилатометричеокого исследования. Это привело к другому методу построения диаграмм состояния, в котором измеряется температурный коэффициент сопротивления .

Температурный коэффициент сопротивления

Электросопротивление при температуре

Маттиссен установил, что увеличение сопротивления металла вследствие присутствия малого количества второго компонента в твердом растворе не зависит от температуры; отсюда следует, что для такого твердого раствора значение не зависит от концентрации. Это значит, что температурный коэффициент сопротивления пропорционален т. е. проводимости, и график коэффициента а в зависимости от состава подобен графику проводимости твердого раствора. Известно много исключений из этого правила, особенно для переходных металлов, но для большинства случаев оно приблизительно верно.

Температурный коэффициент сопротивления промежуточных фаз - обычно величина того же порядка, что и для чистых металлов, даже в тех случаях, когда само соединение имеет высокое сопротивление. Есть, однако, промежуточные фазы, температурный коэффициент которых в некотором интервале температур равен нулю или отрицателен.

Правило Маттиссена применимо, строго говоря, только к твердым растворам, но известно много случаев когда оно, повидимому, верно также для двухфазных сплавов. Если нанести температурный коэффициент сопротивления в зависимости от состава, кривая обычно имеет ту же форму, что и кривая проводимости, так что фазовое превращение можно обнаружить тем же путем. Этот метод удобно применять, когда из-за хрупкости или по другим причинам нельзя изготовить образцы, пригодные для измерений проводимости.

На практике средней температурный коэффициент между двумя температурами определяется измерением электросопротивления сплава при этих температурах. Если в рассматриваемом интервале температур не происходит фазового превращения, то коэффициент определяемый по формуле:

будет иметь такое же значение, как если интервал невелик. Для закаленных сплавов в качестве температур и

Удобно взять соответственно 0° и 100° и измерения дадут области фаз при температуре закалки. Однако, если измерения проводят при высоких температурах, интервал должен быть намного меньше, чем 100°, если граница фаз может находиться где-то между температурами

Рис. 158. (см. скан) Электропроводность и температурный коэффициент электросопротивления в системе серебро-магиий (Тамман)

Большое преимущество этого метода заключается в том, что коэффициент а зависит от относительного сопротивления образца при двух температурах, и таким образом на него не влияют раковины и другие металлургические дефекты образца. Кривые проводимости и температурного коэффициента

сопротивления в некоторых системах сплавов повторяют одна другую. Рис. 158 взят из ранней работы Таммана (кривые относятся к сплавам серебра с магнием); более поздняя работа показала, что область -твердого раствора уменьшается с понижением температуры и в районе фазы существует сверхструктура. Некоторые другие границы фаз в последнее время также претерпели изменения, так что диаграмма, представленная на рис. 158, имеет лишь исторический интерес и не может быть использована для точных измерений.